Beweglich Durchschnittlich atau yang lebih dikenal dengan MA merupakan Indikator yang paling sering digunakan dan paling standar. Meskipun sangat sederhana, tetapi Gleitender Durchschnitt sendiri memiliki aplikasi yang sangat luas. Dikatakan sederhana karena pada dasarnya metode ini hanyalah pengembangan dari metode rata-rata yang biasa kita kenal. Misalnya kita memiliki nilai 2,3,4,5,6 maka rata rata Dari nilai-nilai tersebut adalah (23456) / 5 4. Sebagaimana namanya Moving Average adalah Indikator Yang menghitung rata-rata bergerak Dari sebuah Daten. Mengapa dikatakan menghitung rata-rata bergerak karena MA ini menghitung nilai dari setiap Daten yang bergerak berubah. Jadi MA ini akan selbst menghitung setiap Daten atau nilai yang baru terbentuk. Dalam kancah trading forex, secara umum Beweglicher Durchschnitt dikenal dengan tiga varian yang berbeda yaitu Einfacher beweglicher Durchschnitt. Gewichteter gleitender Durchschnitt als exponentieller gleitender Durchschnitt. Masing-masing varian tersebut sesungguhnya adalah sama-sama menghitung rata-rata bergerak tetapi dengan metode yang berbeda dalam penghitunganya. A. Einfacher beweglicher Durchschnitt (SMA) Einfacher bewegender Durchschnitt atau yang sering disingkat SMA adalah varian paling sederhana dari Indikator Beweglicher Durchschnitt. Dikatakan paling sederhana karena SMA ini menggunakan metode paling einfach dalam menghitung rata-rata data bergerak. Sebagai contoh: Jika kita mempunyai Daten 2, 3, 4, 5, 6, 7, 9 dan 10. Dan kemudian kita Akan mencari nilai rata-rata Dari Daten tersebut maka kita jumlahkan semua Daten tersebut dan kemudian hasilnya kita bagi dengan banyaknya Daten pembagi Agar lebih mudah mari kita terapkan penghitunganya. Daten: 2, 3, 4, 5, 6, 7, 9, 10 Bilangan pembagi. 8 Rata-rata Anzahl der Beiträge Daten dibagi Bilangan pembagi Maka nilai rata-ratanya adalah 44/8 5,5 2. Exponential Moving Average (XMA) Exponential Moving Average atau Yang sering disingkat XMA merupakan penyempurnaan Dari metode SMA. Dikatakan sebagai penyempurnaan karena XMA menghitung rata-rata bergerak dengan pembobotan yang berbeda pada masing-masing daten yang telah terbentuk pada blok daten. Pada XMA terjadi sebaliknya yaitu semakin panjangperiode yang kita pakai maka semakin kecil pembobotan nilai terakhir yang kita pakai. Es ist dir nicht erlaubt, Anhänge hochzuladen. Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten. BB-Code ist an. Smileys sind an. Dibawah ini adalah perhitungan XMA 6 periode: Beberapa Dari Anda Yang memperhatikan Daten-Daten Yang membosankan ini pastilah bertanya-tanya Dari Mana nilai vorherigen XMA Pada Daten Nomor 6 karena bukankah kita belum sama sekali memiliki nilai XMA Pada bagian sebelumnya Jawabannya, nilai vorherige XMA tersebut Adalah nilai SMA. Jadi, Nilai XMA untuk Daten pertama adalah sama persis dengan nilai SMA. Dalam siehe auch: besarnya adalah 25,666667. Diperole dari (252428242627) / 6 25,666667. Sama persis dengan cara menghitung Nicht vergeben SMA bukan (ayo lihat kembali pada bab sebelumnya). XMA pada nomor 6 diperoleh dari rumus diatas yaitu. Perhitungan terus dilakukan seperti von diatas untuk memperoleh nilai XMA berikutnya. Tapi sudahlah, And.................................................., Nam..................................... Tidak ada yang menghalangi Übersetzung. 3. Gewichteter gleitender Durchschnitt (WMA) Gewichteter gleitender Durchschnitt atau yang lebih dikenal dengan WMA adalah salah satu varianisch MA yang menghitung rata-rata Daten bergerak dengan pembobotan pada beberapa data terakhir yang terbentuk. Pada SMA, bobot setiap Daten Yang telah terbentuk Pada beberapa Periode sebelumnya atau yang baru saja terbentuk memiliki bobot penilaian yang sama. Sementara pada WMA pada masing-masing Daten Yang telah terbentuk memiliki pembobotan yang berbeda. Daten yang baru saja terbentuk pada blok daten memiliki pembobotan yang lebih ketimbang daten yang telah terbentuk pada blok daten sebelumnya. Pembobotan nilai pada WMA akan tergantung pada panjang periode yang kita tetapkan. .. Iode iode iode iode iode iode iode iode iode iode iode iode iode iode iode......................... Perhatikan tabel sederhana dibawah: Dalam Diagramm forex, penggunaan MA ini adalah untuk menghitung rata-rata bergerak dari blok Daten atau yang lebih dikenal dengan istilah Kerze. Aplikasi MA memiliki beberapa metode dengan penghitungan yang berbeda: Offen. Menghitung rata-rata nilai öffnen dari blok Daten Jika kita menerapkan MA dengan zutreffen Öffnen maka MA ini hanya menghitung rata-rata dari setiap nilai öffnen yang terbentuk dari masing-masing blok Daten pada Diagramm Schließen. Menghitung rata-rata nilai schließen dari blok Daten Jika kita menerapkan MA dengan anwenden Schließen maka MA ini hanya menghitung rata-rata dari setiap nilai Schließen yang terbentuk dari masing-masing blok data pada chart High. Menghitung rata-rata nilai Hoch dari blok Daten Jika kita menerapkan MA dengan anwenden High maka MA ini hanya menghitung rata-rata dari setiap nilai Hohe Yang terbentuk dari masing-masing blok Daten pada Diagramm Niedrig. menghitung rata-rata nilai Low Dari Blok Daten Jika kita menerapkan MA dengan Low maka MA gelten ini hanya menghitung rata rata Dari setiap nilai Low Yang terbentuk Dari Masing-Masing Blok Daten Pada Chart Median Price (HL / 2): menghitung rata-rata nilai Median Dari Blok Daten Jika kita menerapkan MA dengan gelten Tengah maka MA ini hanya menghitung rata-rata Dari setiap nilai Tengah yaitu (nilai HighLow) / 3 yang terbentuk Dari Masing-Masing Blok Daten pada Chart Typische Preis (HLC / 3): menghitung Rata-rata nilai karakter dari blok Daten Jama kita menerapkan MA dengan anwenden Typische Preis maka MA ini hanya menghitung rata-rata dari setiap nilai Typische Preis yaitu (nilai HighLowClose) / 3 yang terbentuk dari masing-masing blok Daten pada chart Weighted Close (HLCC / 4): menghitung rata-rata nilai karakter dari blok Daten Jika kita menerapkan MA dengan anwenden Gewichtet Schließen maka MA ini hanya menghitung rata-rata dari setiap nilai Gewichtet Schließen yaitu (nilai HighLowCloseSchließen) / 4 yang terbentuk dari masing-masing blok data pada Diagramm Danke für das Lesen des bewegenden Durchschnittes auf den Otopipen Wenn angenommen, teilen Sie es bitte über FB, Twitter und schreiben Sie Ihre Kommentare zu diesem ArtikelWeight Moving Averages: Die Grundlagen Im Laufe der Jahre haben Techniker zwei Probleme mit dem einfachen gleitenden Durchschnitt gefunden. Das erste Problem liegt im Zeitrahmen des gleitenden Durchschnitts (MA). Die meisten technischen Analysten glauben, dass Preis-Aktion. Der Eröffnungs - oder Schlussaktienkurs, reicht nicht aus, um davon abhängen zu können, ob Kauf - oder Verkaufssignale der MAs-Crossover-Aktion richtig vorhergesagt werden. Zur Lösung dieses Problems weisen die Analysten den jüngsten Preisdaten nun mehr Gewicht zu, indem sie den exponentiell geglätteten gleitenden Durchschnitt (EMA) verwenden. (Erfahren Sie mehr bei der Exploration der exponentiell gewogenen gleitenden Durchschnitt.) Ein Beispiel Zum Beispiel, mit einem 10-Tage-MA, würde ein Analytiker den Schlusskurs des 10. Tag nehmen und multiplizieren Sie diese Zahl mit 10, der neunte Tag um neun, der achte Tag um acht und so weiter auf die erste der MA. Sobald die Summe bestimmt worden ist, würde der Analytiker dann die Zahl durch die Addition der Multiplikatoren dividieren. Wenn Sie die Multiplikatoren des 10-Tage-MA-Beispiels hinzufügen, ist die Zahl 55. Dieses Kennzeichen wird als linear gewichteter gleitender Durchschnitt bezeichnet. (Für verwandte Themen lesen Sie in Simple Moving Averages machen Trends Stand Out.) Viele Techniker sind fest davon überzeugt, in der exponentiell geglättet gleitenden Durchschnitt (EMA). Dieser Indikator wurde auf so viele verschiedene Weisen erklärt, dass er Studenten und Investoren gleichermaßen verwirrt. Vielleicht die beste Erklärung kommt von John J. Murphys Technische Analyse der Finanzmärkte, (veröffentlicht von der New York Institute of Finance, 1999): Der exponentiell geglättete gleitende Durchschnitt behebt beide Probleme mit dem einfachen gleitenden Durchschnitt verbunden. Erstens weist der exponentiell geglättete Durchschnitt den neueren Daten ein größeres Gewicht zu. Daher ist es ein gewichteter gleitender Durchschnitt. Doch während es den vergangenen Preisdaten eine geringere Bedeutung zuweist, enthält es in seiner Berechnung alle Daten in der Lebensdauer des Instruments. Zusätzlich ist der Benutzer in der Lage, die Gewichtung anzupassen, um ein größeres oder geringeres Gewicht zu dem letzten Tagespreis zu ergeben, der zu einem Prozentsatz des vorherigen Tageswertes addiert wird. Die Summe der beiden Prozentwerte addiert sich zu 100. Beispielsweise könnte dem letzten Tagespreis ein Gewicht von 10 (.10) zugewiesen werden, das zum vorherigen Tagegewicht von 90 (.90) addiert wird. Das ergibt den letzten Tag 10 der Gesamtgewichtung. Dies wäre das Äquivalent zu einem 20-Tage-Durchschnitt, indem die letzten Tage Preis einen kleineren Wert von 5 (.05). Abbildung 1: Exponentiell geglättete gleitende Durchschnittswerte Die obige Grafik zeigt den Nasdaq Composite Index von der ersten Woche im Aug. 2000 bis zum 1. Juni 2001. Wie Sie deutlich sehen können, ist die EMA, die in diesem Fall die Schlusskursdaten über einen Neun-Tage-Zeitraum, hat endgültige Verkaufssignale am 8. September (gekennzeichnet durch einen schwarzen Pfeil nach unten). Dies war der Tag, an dem der Index unter dem Niveau von 4.000 unterbrach. Der zweite schwarze Pfeil zeigt ein anderes Bein, das die Techniker tatsächlich erwartet hatten. Der Nasdaq konnte nicht genug Volumen und Interesse von den Kleinanlegern erzeugen, um die 3.000 Marke zu brechen. Danach tauchte es wieder zu Boden, um 1619.58 am 4. April. Der Aufwärtstrend vom 12. April ist durch einen Pfeil markiert. Hier schloss der Index bei 1.961,46, und Techniker begannen zu sehen, institutionelle Fondsmanager ab, um einige Schnäppchen wie Cisco, Microsoft und einige der energiebezogenen Fragen abholen. (Lesen Sie unsere verwandten Artikel: Moving Average Umschläge: Raffinieren ein beliebtes Trading-Tool und Moving Average Bounce.) Buchhaltung Methoden, die auf Steuern und nicht auf das Auftreten von öffentlichen Finanzen konzentrieren. Steuerberatung wird geregelt. Der Boomer-Effekt bezieht sich auf den Einfluss, den der zwischen 1946 und 1964 geborene Generationscluster auf den meisten Märkten hat. Ein Anstieg der Preise für Aktien, die oft in der Woche zwischen Weihnachten und Neujahr039s Day auftritt. Es gibt zahlreiche Erklärungen. Ein Begriff verwendet von John Maynard Keynes verwendet in einem seiner Wirtschaftsbücher. In seiner 1936 erschienenen Publikation The General Theory of Employment. Ein Gesetz der Gesetzgebung, die eine große Anzahl von Reformen in U. S. Pensionspläne Gesetze und Vorschriften. Dieses Gesetz machte mehrere. Ein Maß für den aktiven Teil einer Volkswirtschaft. Die Erwerbsquote bezieht sich auf die Anzahl der Personen, die sind.
No comments:
Post a Comment